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A new method for stress analysis of sheetpiles and prediction of
displacements is presented. Soil is modelled as a bed of springs,
whose constitutive law is elastic plastic strainhardening. All the
constitutive parameters are linked to usual geotechnical parameters.
The comparisons performed show a good agreement between experimental
data of reduced scale models and numerical predictions.

Cette communication présente une nouvelle méthode pour l'analyse de
1'état de contrainte et la prévision des déplacements des palplanches.
Le sol est schématisé a l'aide d'un lit des ressorts élastoplastiques
écrouissables. Tous les paramétres constitutifs sont 1liés aux para-
métres géotechniques usuels. On montre, & l'aide de plusieurs compa-
raisons, qu'il existe un bon accord entre les résultats expérimentaux

obtenus sur modéles réduits et les visions des calculs.

1. INTRODUCTION.

Thz analysis and design of anchored sheetpiles walls is tackled either
by means of semiempirical rules or via a numerical analysis. The latter
method is certainly more rational and allows to take into account soil
nonhomogenheities  without difficulties, but it is not free from
shortcomings. In the simplest approach, soil is ideslized as a bed of
elastic springs. The difficulty, however, is connected to the choice of
the correct wvalue for the stiffness of the springs. Since this method
oversimplifies the problem, the choice of the stiffness value depends
not only on the soil but also on thz geometrical and mechanical
characteristics of the problem at hand, such as the depth and stiffness
of the wall, sa that the spring stiffness is different for springs at
the back or in front of the sheetpile. The best choice for predicting
b=nding moments in the structure may not be the bzst for determining
displacements. 0On the other hand, the finite element mzthod allows a
more thoroughful investigation of the state of stress and strain in the
soil and in the retaining structure, but a finite element analysis is
costly and time consuming, especially if a realistic constitutive law
for soil is employed. It can be used for verification of an already
dssigned structure, but design optimization is virtually impossible for
cost reasons.
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The method that will be presented here tries to overcome such
difficulties combining the simplicity of the spring model with a more
adequate idealization of soil behaviour, which is considered as elastic
plastic strainhardening. It will be shown that it is possible to obtain
reasonable predictions for soil pressures, bending moments, sheetpile
displacements and to follow the variation of the tensile force in the
anchors with the depth of the excavation. The accuracy of predictions
is good not only in normal working conditions, but even the depth of the
excavation that produces failure can be calculated. The method allows a
very fast analysis so that several analyses may be performed in the time
necessary for a single finite element run, so that optimum design may be
achieved. Last, but not least, all the model constants are traditional
geotechnical parameters, which can be evaluated in the conventional way.

2. The spring model

Soil behaviour is nonlinear and irreversible. In an unloading reloading
cycle, however, soil can be considered to behave as an elastic material,
as a first approximation. Soil stiffness Ffor virgin loading is markedly
different from that pertaining to unloading reloading. The level at
which virgin loading occurs is not fixed but increases with the maximum
stress ever experienced. The state of allowable stresses is limited by
the Coulomb Mohr failure condition.

All the information on the fundamental scil behaviour described in the
previous paragraph have been condensed into the model. It is assumed
that the relation between the force in the i-th spring, Si yand the
displacement, si yis given by

S;=K, s, (1)
where K. 1is given by
i
Esitl
Ki:a T (2)
Consider first the soil stiffpess, E_ , which is equal to the Young

modulus For a linear elastic material. Since soil is not elastie, E

can be equal either to E _ or to E__ depending on the state of streSs
and the stress increment diféction. is the stiffness for virgin
loading. The soil is characterizedpry such a stiffness only if the
state of stress is equal to the maximum past stress and the stress is

increasing. Fig.1 better explains this point. Assume that the
sheetpile soil interaction is a plane strain problem and that the
vertical and horizontal stresses are principal stresses. Thus the
relevant part of the state of stress is fully identified by two
parameters, o/ and G Rt 0 and ¢! are the maximum past vertical
and hor:zontaY stresses, it is p0831ble gB define in the plane g ,0! a

domain of elastic behaviour which is limited by the Coulomb 'failure
lines and the lines o 0 & 70' Assume also for the sake of
simplicity, that svil is graﬁular pStless increments such as AB, CD, EF
are all characterized by the unloading releading stiffness £ , while GI
is linked to E__ . Since for this latter increment o! becomes equal to
o!,., there is Pan expansion of the elastic domain. "Note however that,
since g, does not change, UQ remaing constant, so that hardening is
anisotropic. "
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The two failure conditions are given by

1 - L]
9=Ky Oy (3)
1 - 1
o}7Kp0y, (4)
where K and K are the active and passive earth pressure
coefficients. In tﬁe following, K will be assumed equal to the
Rankine value, while the value o% K, will be chosen in such a way to
implicitly take into account friction Eetween soil and wall. Indeed,
measured values for K are quite larger than the Rankine passive
coefficient, in all the examined cases.
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Fig.1 Failure condition, elastic domain and anisotropic hardening for
granular soil.

Note that E and Ee need not to be constant. They can be made to
depend on thé value of Bhe mean pressure p', for instance, in the
following way

P
Eur:Rur(p_) (:3,)
12 n
Eop=Rep(P/P,) (6)
where p is a reference pressure and R R, n are experimental

L
constanfs. Alsu, soil stiffness may be takén VBriable with stress
ratin, as in the hyperbolic stress strain relation, for example. In the
following, however, for the sake of simplicity, we shall assume that
that soil stiffness does not depend on stress ratio.

Of the other parameters which characterize the spring stiffness, ti is
simply the influence region of the i-th spring, or the semidiStance
between spring (i-1)th and spring (i+1)th, a is a non-dimensional
constant and L 1is a geometric quantity which is characteristic of the
proolem. The latter should take account of the width of the region of
soil which is involved in the movement of the sheetpile. It will then
be different for the active and the passive zone and will depend on the
depth of excavation. It will be assumed that for the springs at the
back of the sheetpile

LMng'tan(asc’-@/z) (7)
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while in front of it
Ly=5(H'-D)tan(450-4/2) (8)

where & is the effective friction angle of the soil, D is the depth of
the excavation, and H' is the effective length of the wall, that is

H'=min(20,H) (9)

while H is the total length. The assumption that only the soil up to a
depth equal to twice the excavation is involved in the deformation of
the wall is arbritary, but it is corroborated by the results of the
numerical analysis.

Finally, the parameter a can be determined by comparing the calculated
results with the experimental data. In all the cases examined up to now
a can be taken equal to unity. However, it may be that from the
analysis of other case histories it would appear convenient to choose a
different value.

3. The modelling of the excavation.

The state of stress in the soil after the sheetpile insertion is assumed
to ve equal to the stress state at rest, which is taken as known,
Each step of the excavation is divided in two phases. In the first one,
the wall is assumed to be fixed while the excavation proceeds. There is
only a variation of the state of stress in the springs in front of the
sheetpile since the vertical stress is reduced and the horizontal stress
will vary according to the law

Ué:ﬁU(ﬁC(DCR)m (10)

where KNC is the coefficient of earth pressure at rest for the soil in
the virgin condition while m is .an empirical coefficient, ranging
between 0 and 1, which is generally close to.5. In the following,
however, for the sake of simplicity m will be taken equal to zero so
that o/, =const in this first phase. Note however that the ratio between
o/, andg ! should always be less than K, . Near the base of the
excavation UQ is very small so that Eq.10 will be no more valid and
LA 1
OH-KPGV (11)

Let now the wall free to move. Since the state of stress in the springs
is no more self-equilibrated the wall will depart from its initial
position until a new equilibrium position is achieved. A first guess on
the stiffness of the springs is necessary. At the end of each step it
is checked whether the calculated displacement is compatible or not with
the assumed value of the stiffness. In case it is not, the step is
erased, the value of the stiffness is changed and a new step 1is
forwarded. Since the number of springs is generally low, this iteration
procedure is fast.

When convergence 1is achieved a new excavation step can be performed

first by fixing the wall and altering the state of stress and then
performing the iterations towards a new equilibrium position. When the
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excavation is deep enough it is no more possible to reach convergence.
This situation is associated with failure.

With such a procedure it is easy to model the anchoring system as well.
At the appropriate depth a new linear elastic spring is inserted which
has the stiffness and pretension of the anchor. The pretension causes a
backward movement of the wall and a rearrangement of the state of stress
in the soil springs. When the excavation proceeds, the anchor behaves
as an additional (elastic) spring, of appropriate stiffness,, varying
its tension at each step of the excavation. In this way, it is then
possible to follow the tension variation in the anchoring system.

At each step of the excavation, when the equilibrium position 1is
achieved, it is easy to calculate bending moments and shears within the
wall.

The effects of the cohesion, surcharge, overconsolidation, water
pressures, can be easily taken into account with simple artifices.
Settlements of the soil can be evaluated following a procedure suggested
by Bransby and Milligan (1975) once the dilatancy of the soil at failure
is known.

4. Comparison with experimental data on reduced scale models.

The first example considered involves a model of a cantilever sheetpile
wall. The sand employed is Ticino sand whaose mechanical characteristics
have been thoroughly described by Jamiolkowski et al (1985). The
results of the tests performed are reported in Dolei et al (1986).
Fig.2 shows a comparison between the calculated and observed results of
displacements versus depth of the excavation for dense and loose sand.
The parameters employed in the model have been derived from triaxial
test data.

Fig.3 shows a comparison between calculated and experimental data for a
model wall rotated asbout the toe. Sand is dense rounded Leighton
Buzeard and the tests have been performed by James and Bransby (1970).
This time, due to lack of information, some of the parameters have been
guessed on the basis of the experimental results. It is noteworthy that
the model predictions match the soil pressures variation with depth,
which is very far from the predictions of Rankine's theory.

Fig.4 shows pressures and bending moments for an anchored sheetpile with
different wall stiffness. For comparison, the results predicted by
means of Blum's theory are also shown(dotted lines). The trend of the
computed results is in clear agreement with the results obtained by Rowe
(1955) and the measurements of Rowe and Briggs (1961).

5. CUNCLUSIONS.

The comparisons performed are generally succesfull. The parameters
employed are nothing more than coefficients of earth pressures and
stiffness moduli, different for wvirgin loading and unloading;

sheetpiles with any number of anchor levels and struts can be analysed.
The numerical procedure employed 1s very fast so that a design
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optimization is possible at a quite reasonable cost. It is the opinion
of the authors that this method could be a valid help to the design of
anchored retaining structures.
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Fig.2 Relation between depth of excavation and maximum horizontal displa-

cement for a cantilever sheet-pile wall in dense (D) and loose (S) sand:

comparison between calculated (solid curves) and experimental (dots) results

Experimental data from Dolei et al. (1986).
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-Fig.3 Comparison between experimental (doted lines) and calculated (so-
lid lines) results for a wall rotated about the toe against a mass of
dense sand. (a) relation between applied torque and wall rotation, %(b)

horizontal pressures for $= 1°

(c) horizontal pressures for $= 3°.

Experimental data from James and Bransby (1970).
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Fig.4 Horizontal pressures (a) and bending moments (b) for a single
anchored sheet-pile wall in sand with different flexibility numbers.

{p in m/N mm, The curves for log p= -= have been obtained by means of
the Blum's theory).
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